Internal simulation of perception: a minimal neuro-robotic model

نویسندگان

  • Tom Ziemke
  • Dan-Anders Jirenhed
  • Germund Hesslow
چکیده

This paper explores the possibility of providing robots with an ‘inner world’ based on internal simulation of perception rather than an explicit representational world model. First a series of initial experiments is discussed, in which recurrent neural networks were evolved to control collision-free corridor following behavior in a simulated Khepera robot and predict the next time step’s sensory input as accurately as possible. Attempts to let the robot act blindly, i.e. repeatedly using its own prediction instead of the real sensory input, were not particularly successful. This motivated the second series of experiments, on which this paper focuses. A feed-forward network was used which, as above, controlled behavior and predicted sensory input. However, weight evolution was now guided by the sole fitness criterion of successful, ‘blindfolded’ corridor following behavior, including timely turns, as above using as input only own sensory predictions rather than actual sensory input. The trained robot is in some cases actually able to move blindly in a simple environment for hundreds of time steps, successfully handling several multi-step turns. Somewhat surprisingly, however, it does so based on self-generated input that is not particularly similar to the actual sensory values. r 2005 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An indirect adaptive neuro-fuzzy speed control of induction motors

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

متن کامل

Representation as Internal Simulation: A Minimalistic Robotic Model

Embodied cognition theorists have in recent years proposed that a cognitive agent's "representations" or "inner world" can at least partly be constituted by internal emulations or simulations of its sensorimotor interaction with the world, i.e. covert perception and action. This paper recapitulates some of the empirical evidence, distinguishes between implicit, internal and external anticipatio...

متن کامل

Dynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers

In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...

متن کامل

Dynamics and Motion Control of Wheeled Robotic Systems

Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...

متن کامل

Dynamics and Motion Control of Wheeled Robotic Systems

Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2005